Δ¹-PYRROLINE-5-CARBOXYLATE: THE PRODUCT OF PROLINE DEHYDROGENASE FROM CUCURBITA MOSCHATA COTYLEDONS

ALEMAR B. RENA* and WALTER E. SPLITTSTOESSER

Department of Horticulture, University of Illinois, Urbana-Champaign, Urbana, IL 61801, U.S.A.

(Received 3 February 1974)

Key Word Index—Cucurbita moschata; Cucurbitaceae; pumpkin; pyrroline-5-carboxylate; proline dehydrogenase.

Abstract—The product of oxidation of proline by pumpkin proline dehydrogenase reacted with o-aminobenzal-dehyde to give a yellow compound that had an absorption spectrum similar to that obtained from chemically synthesized Δ^1 -pyrroline-5-carboxylate. The product of the proline dehydrogenase reaction and synthetic Δ^1 -pyrroline-5-carboxylate had identical R_f values. Both authentic Δ^1 -pyrroline-5-carboxylate and the product of the enzyme gave a pink colour with acid ninhydrin on paper chromatograms and both had identical elution patterns on Dowex $50(H^+)$ columns. Neither synthetic Δ^1 -pyrroline-5-carboxylate nor the product of proline-dehydrogenase produced γ -amino butyrate with hydrogen peroxide.

INTRODUCTION

 α -Keto- δ -aminovalerate is the oxidative product of proline in animal tissues^{1,2} which is in equilibrium with Δ^1 -pyrroline-2-carboxylate.³ Proline-[15 N- 2 H] is metabolized to glutamate which contains a large percentage of isotope but the nature of the intermediates was not elucidated.⁴ A particulate fraction of rabbit kidney or liver oxidized proline via the cytochrome system⁵ and glutamic-semialdehyde (which is in equilibrium with Δ^1 -pyrroline-5-carboxylate⁶) was the oxidation product. Following this observation, a large number of animal tissues $^{7-11}$ and microorganisms¹²⁻¹⁵ were shown to metabolize proline

- * Present address: Instituto De Ciencias Biologicas, Universidade Federal De Vicosa, Vicosa, Minas Gerais, Brasil.
- ¹ Krebs, H. A. (1939) Enzymologia 7, 53.
- ² Blanchard, M., Green, D. E., Nocito, V. and Ratner, S. (1944) J. Biol. Chem. 155, 421.
- ³ Meister, A. (1954) J. Biol. Chem. 206, 577.
- ⁴ STETTEN, M. R. and SCHOENHEIMER, R. (1944) J. Biol. Chem. 153, 113.
- ⁵ TAGGART, J. V. and KRAKAUR, R. B. (1949) J. Biol. Chem. 177, 641.
- ⁶ Vogel, H. J. and Davis, B. D. (1952) J. Am. Chem. Soc. 74, 109.
- ⁷ ADAMS, E. and GOLDSTONE, A. (1960) J. Biol. Chem. 235, 3499.
- 8 ERECINSKA, M. (1966) Acta. Biochem. Polon. 13, 209.
- ⁹ JOHNSON, A. B. and STRECKER, H. J. (1962) J. Biol. Chem. 237, 1876.
- ¹⁰ Lang, K. and Lang, H. (1958) Biochem. Z. 329, 577.
- ¹¹ Lang, K. and Schimid, G. (1951) Biochem. Z. 322, 1.
- ¹² Costilow, R. N. and LAYCOCK, L. (1969) J. Bact. 100, 662.
- ¹³ Frank, L. and Ranhand, B. (1964) Arch. Biochem. Biophys. 107, 325.
- ¹⁴ Frank, L. and Rybicki, P. (1961) Arch. Biochem. Biophys. 95, 441.
- ¹⁵ LING, C. M. and HEDRICK, L. R. (1964) J. Bact. 87, 1462.

via Δ^1 -pyrroline-5-carboxylate. However, in plants the catabolism of proline is reported to occur via an unidentified intermediate. ^{16,17}

The data presented in this paper show that Δ^1 -pyrroline-5-carboxylate is produced by pumpkin proline dehydrogenase, and that Δ^1 -pyrroline-2-carboxylate is not involved.

RESULTS AND DISCUSSION

 Δ^1 -Pyrroline-5-carboxylate was produced chemically and purified by ion exchange chromatography. It produced a pink colour with ninhydrin 9,15,18 and reacted with o-aminobenzaldehyde. On chromatography, followed by reaction with acid ninhydrin. Δ^1 -pyrroline-5-carboxylate could be demonstrated. An aliquot of this fraction was treated with H_2O_2 and then chromatographed; no γ -amino butyrate was formed. After treatment with H_2O_2 , Δ^1 -pyrroline-5-carboxylic acid is not converted to γ -amino butyrate, whereas Δ^1 -pyrroline-2-carboxylic acid is quantitatively converted to γ -amino butyrate. This shows that Δ^1 -pyrroline-5-carboxylate was synthesized and not Δ^1 -pyrroline-2-carboxylate. Solutions of Δ^1 -pyrroline-5-carboxylate are unstable. After chromatography and reaction with ninhydrin, purified Δ^1 -pyrroline-5-carboxylate exhibited only one pink spot (R_f 0·11) (Table 1). However, 3 days later, two new compounds (R_f 0·06, 0·09) were observed (Table 2) and the quantity of these new compounds increased as the solution aged. Glutamate has an R_f similar to unknown 1 and unknown 2 may be a polymerization product. Ω 0

Days after purification	Treatment	Compounds present†	R_f
0	-H,O,	PCA‡	0.11
0	$+ H_2O_3$	Unknown 1§	0.06
3	$-H_{2}O_{3}$	Unknown 1	0.06
	* **	Unknown 2	0.09
		PCA‡	0.11
3	+ H,O,	Unknown 18	0.06
		Unknown 2	0.09

Table 1. Stability of Δ^1 -pyrroline-5-carboxylate in acid solution at 4^{-*}

Pumpkin proline dehydrogenase is NAD-dependent and the amount of proline-[U- 14 C] oxidized to Δ^1 -pyrroline-5-carboxylate in 1 hr was 4% of the initial amount of proline (3·1 μ mol). In rat liver mitochondria high initial concentrations of proline (2·2 mM) are converted to Δ^1 -pyrroline-5-carboxylate to only a minor extent (5% in 1 hr). However, when the concentration of proline is low (0·3 mM) about 90% of it is oxidized to Δ^1 -pyrroline-5-carboxylate in 3 hr. In pumpkin, proline was always poorly oxidized to Δ^1 -pyrroline-5-carboxylate, regardless of the concentration used.

A portion of the complete proline dehydrogenase reaction mixture which contained proline-[U-14C] was chromatographed on Dowex 50 (H⁻) columns alone or with an aliquot

^{*} The compounds were separated on DF-81 cellulose paper and identified by reaction with acidninhydrin.

[†] No γ-aminobutyrate was observed.

[‡] PCA: Δ^1 -Pyrroline-5-carboxylate.

[§] Has the same R_T as glutamate.

¹⁶ MAZELIS, M. and CREVELING, R. K. (1972) Plant Physiol. 49, 26 (suppl.).

¹⁷ MAZELIS, M. and FOWDEN, L. (1971) J. Expt. Botany 22, 137.

¹⁸ Strecker, H. J. (1960) J. Biol. Chem. **235**, 2045.

¹⁹ MAUGER, A. B. and WITKOP, B. (1966) Chem. Rev. 66, 47.

of purified synthetic Δ^1 -pyrroline-5-carboxylate (Table 2). Group 2 (Fraction 58–78) gave a positive reaction with o-aminobenzaldehyde and was identical with Δ^1 -pyrroline-5-carboxylate when purified by paper chromatography. Aliquots of the enzymatically produced Δ^1 -pyrroline-5-carboxylate (group 2) were applied to DE-81 paper, treated with 0 or 10% H_2O_2 and then chromatographed. Radioactivity was associated with Δ^1 -pyrroline-5-carboxylate and an oxidation product (see Table 1) on the chromatogram that was not treated with H_2O_2 . After treatment with H_2O_2 , some Δ^1 -pyrroline-5-carboxylate was found with a corresponding loss in radioactivity of glutamate and the oxidation product. No radioactivity was associated with γ -amino butyrate. According to Meister³ and Johnson and Strecker, treatment with H_2O_2 converts small amounts of Δ^1 -pyrroline-5-carboxylate to glutamate, but most remains unchanged. However, treatment of Δ^1 -pyrroline-2-carboxylate with H_2O_2 completely converts this compound to γ -amino butyrate. The data presented show that Δ^1 -pyrroline-5-carboxylate is produced from proline by pumpkin proline dehydrogenase, an observation different from that made with peanut.

Table 2. Co-chromatography of synthetic and enzymatically produced Δ^1 -pyrroline-5-carboxylate

Group no.	Fractions* (tube no.)	$cpm \times 10^{-3}$ recovered†	Reaction with o -aminobenzaldehyde (A_{443})
1	40 52	20	0.051
2	58-78	165	0.495
3	84–125	3000	0.002

^{* 7.5-}ml Fractions were collected from a Dowex 50 (H⁺) column.

o-Aminobenzaldehyde was reacted with either synthetic or enzymatically-produced Δ^1 -pyrroline-5-carboxylate and the absorption spectra of the yellow products determined. Absorption maxima were observed at 440 and 292 nm. Strecker¹⁸ found absorption maxima at 430 nm. 292 and 232 nm. The products described here did not absorb at 230 nm. The results also show that Δ^1 -pyrroline-5-carboxylate was produced by pumpkin proline dehydrogenase, and that Δ^1 -pyrroline-2-carboxylate was not involved.

EXPERIMENTAL

Proline dehydrogenase was isolated from 7-day-old pumpkin (*Cucurbita moschata* Poir, cv. Dickinson Field) cotyledons grown in the dark at 28°. Cotyledons were homogenized in 0·1 M phosphate buffer, pH 7·6. The homogenate was filtered through cheesecloth and centrifuged at 31 000 g for 15 min. (NH₄)₂SO₄ was added to the supernatant to 70°, saturation. The suspension was cooled at 0 for 30 min. centrifuged at 31 000 g for 15 min. the pellet dissolved in 0·1 M phosphate buffer, pH 7·6. and used as the enzyme source. Δ^1 -Pyrroline-5-carboxylate-[¹⁴C] was produced by reacting 3 μ mol of L-proline-[¹²C], 1·8 μ Ci L-proline-[U-¹⁴C] (185 mCi/mmol), 0·9 μ mol NAD, proline-dehydrogenase and 0·1 M carbonate-bicarbonate buffer, pH 10·3, in a final vol. of 300 μ L. After 1 hr incubation at 30° the reaction was terminated by the addition of 300 μ l of EtOH and the precipitated protein removed by centrifugation at 31000 g. Δ^1 -Pyrroline-5-carboxylate was synthesized by the method of Jones and Broquist.²0 8 mg of α -amino- δ -hydroxy-valerate and 40 mg of CrO₃ were dissolved in 10 ml of 4 M HCl and maintained at 40° for 16 hr. The reaction mixture was taken to dryness under vacuum at 40° until most of the HCl was removed. The residue was dissolved in H₂O, neutralized to pH 7 with KOH, and the Cr(OH)₃ pt. removed by centrifugation. The supernatant containing Δ^1 -pyrroline-5-carboxylate was stored at 4°, at pH 1·5. Δ^1 -Pyrroline-5-carboxylate was purified by addition to 0·9.× 50-cm columns of Dowex-50 (H⁺) resin at 2°.

[†] The enzymatic reaction mixture contained 3 μ mol of L-proline- 12 C, 1·8 μ Ci of L-proline -[U- 14 C], 0·9 μ mol NAD, 500 μ g of protein (proline dehydrogenase) and 0·1 M CO $_3$ -HCO $_3$ buffer, pH 10·3, in a final volume of 300 μ l.

²⁰ JONES, E. E. and BROQUIST, H. P. (1965) J. Biol. Chem. 240, 2531.

The column was washed with 30 ml $\rm H_2O$ and 55 ml 0·1 M HCl and the liquid discarded. Δ^1 -Pyrroline-5-carboxylate was then eluted with 0·5 M HCl and 7·5-ml fractions were collected. Δ^1 -Pyrroline-5-carboxylate was identified by the colour reaction (pink) with acid ninhydrin¹⁸ and its reaction with o-aminobenzaldehyde, $^3\Delta^1$ -Pyrroline-5-carboxylate was applied to Whatman DEAE-cellulose paper (DE-81) and treated with 20 μ l of 10% $\rm H_2O_2$ and the liquid subsequently evaporated. Chromatograms were developed with $\rm H_2O$ for 2 hr. This chromatography separated glu, pro, γ -amino butyrate and Δ^1 -pyrroline-5-carboxylate. Radioactivity was determined with a scintillation spectrometer or with a radiochromatogram scanner.

Acknowledgements—This research was funded by the Illinois Agricultural Experiment Station, the United States' Agency for International Development and the Federal University of Vicosa.